Enzymatic catalysis of formation of Z-aspartame in ionic liquid - An alternative to enzymatic catalysis in organic solvents.

نویسندگان

  • M Erbeldinger
  • A J Mesiano
  • A J Russell
چکیده

We present the first report of enzymatic catalysis in an ionic liquid. The virtually nonexistent vapor pressure makes ionic liquids an exciting new alternative for enzyme-catalyzed syntheses in environmentally friendly environments. Z-aspartame was synthesized in a thermolysin-catalyzed reaction of carbobenzoxy-L-aspartate and L-phenylalanine methyl ester hydrochloride in 1-butyl-3-methylimidazolium hexafluorophosphate (BP6). Ionic liquids such as BP6 are thermally stable and have a remarkable range of temperatures over which they remain liquid (300 degrees C). With an initial rate of 1.2 +/- 0.1 nmol min(-)(1) mg(-)(1), we observed a competitive rate in comparison to that of enzymatic synthesis in organic solvent. Additionally, the enzyme exhibits outstanding stability, which would normally require immobilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A One-pot Condensation for Synthesis 2-methyl-4-phenylpyrano[3, 2-c] chromen-5(4H)-one and Synthesis of Warfarin by Ionic Liquid Catalysis

The anticoagulant racemic warfarin is synthesized by the Michael addition of 4-hydroxycoumarin with benzalacetone in the present of equimolar amounts of imidazolium based ionic liquids [bmim] BF4 and [bmim] Br and other reaction solvents such as H2O, pyridine and ammonia in five different tests. Also synthesis of a derivative of warfarin (2-methyl-4-phenyl pyrano [3, 2-c] chromen-5(4H)-one) und...

متن کامل

A One-pot Condensation for Synthesis 2-methyl-4-phenylpyrano[3, 2-c] chromen-5(4H)-one and Synthesis of Warfarin by Ionic Liquid Catalysis

The anticoagulant racemic warfarin is synthesized by the Michael addition of 4-hydroxycoumarin with benzalacetone in the present of equimolar amounts of imidazolium based ionic liquids [bmim] BF4 and [bmim] Br and other reaction solvents such as H2O, pyridine and ammonia in five different tests. Also synthesis of a derivative of warfarin (2-methyl-4-phenyl pyrano [3, 2-c] chromen-5(4H)-one) und...

متن کامل

Ionic liquid N-ethylpyridinium hydrogen sulfate as an efficient catalyst for designing indole scaffolds and their antimicrobial behavior

Ionic liquid N-ethylpyridinium hydrogen sulfate has been prepared, characterized and used as an efficient recyclable catalyst for the synthesis of a series of indoles and bis(indolyl)methanes. Latter have been further explored for their potential antimicrobial activity against E coli and Bacillus. The ionic liquid used was recycled in the end and its recovery was facilitated b...

متن کامل

Ionic liquid N-ethylpyridinium hydrogen sulfate as an efficient catalyst for designing indole scaffolds and their antimicrobial behavior

Ionic liquid N-ethylpyridinium hydrogen sulfate has been prepared, characterized and used as an efficient recyclable catalyst for the synthesis of a series of indoles and bis(indolyl)methanes. Latter have been further explored for their potential antimicrobial activity against E coli and Bacillus. The ionic liquid used was recycled in the end and its recovery was facilitated b...

متن کامل

Enzymatic catalysis in nonaqueous solvents.

Subtilisin and alpha-chymotrypsin vigorously act as catalysts in a variety of dry organic solvents. Enzymatic transesterifications in organic solvents follow Michaelis-Menten kinetics, and the values of V/Km roughly correlate with solvent's hydrophobicity. The amount of water required by chymotrypsin and subtilisin for catalysis in organic solvents is much less than needed to form a monolayer o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2000